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1. Introduction

One of the classical conjugate problems is a heat
transfer between a laminar forced convection and a
flat plate of finite thickness, the bottom of which is
kept at a constant temperature. There have been sev-
eral reports on this problem, that is, Luikov [1],
Payvar [2], Karvinen [3], Pozzi and Lupo [4], Pop and
Ingham [5], Trevifio et al. [6] and Vynnycky et al. [7].
In Refs. [1-5], heat conduction in the flat plate is
assumed to be one-dimensional. Recent studies [6,7]
take account of axial conduction in the flat plate.

Examination of the surface temperatures given by
the above-mentioned studies reveals that there are two
solution families on the surface temperature for the
case of one-dimensional heat conduction in the flat
plate: one by Refs. [1-3], the other by Refs. [4,5]. The
difference of the two solution families will be shown
later. The effect of the two-dimensional heat conduc-
tion on the surface temperature of the flat plate, which
appears near the leading edge, is not yet made so
clear.

This study tries to get a clear view of this classical
conjugate problem through examination of the be-
havior of the surface temperature with distance from
the leading edge. After deriving dimensionless groups
which determine the surface temperature of the flat
plate, the surface temperatures of the flat plate are cal-
culated numerically, then compared with the solutions
of the available studies.

2. Governing equations

A schematic diagram of the present problem is

shown in Fig. 1. A uniform flow, whose velocity and
temperature are u;, and T;,, respectively, flows over a
flat plate of finite thickness e. The laminar boundary
layer approximation is assumed to be valid in the
fluid. The bottom of the plate (at z=e, the z-coordi-
nate is directed downward from the flat plate surface)
is maintained at a constant temperature 7. The for-
ward surface of the plate (at x = 0) is assumed to be
adiabatic. The surface temperature of the plate (at
y=z=0), Ty, is studied under a conjugate thermal
condition.

For the fluid flow, the well-known Blasius’s equation
and the boundary conditions (f is the dimensionless

stream function and 0= p(uinfvex)"?, see
Nomenclature)

d&*f N 1 &f

dp 27 dp?

n=0: f=0, dffdy=0; n=o0: dffdy=1 (1)

are used [8].
The energy conservation equations for the fluid and
the flat plate in dimensional form are given by

oTr AT _ 0Ty

27t - 2
ax T dy a 0y? @
2T,  9°T,

: - =0 3
ax2 022 3)

where Ty, T are the temperatures in the fluid and the
flat plate, respectively, a; is the thermal diffusivity of
the fluid, and u, v are velocity components. The
boundary conditions are set as follows

0017-9310/00/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(99)00170-2



640 K. Chida | Int. J. Heat Mass Transfer 43 (2000) 639642

Nomenclature
ar thermal diffusivity of the fluid
Br, Brun number; =(i¢/A)(e/x)Pr™ Rel,

where m = 1/3, n=1/2 for laminar
boundary layer flow

v velocity component
dimensionless x-coordinate; Eq. (6)
, ¥,z coordinates, see Fig. 1

B
*

u
X
X

where A, As are the thermal conductivities of the fluid
and the flat plate, respectively.

3. Dimensionless groups

Since the x-directional conduction in the fluid is
neglected, the heat flux in the fluid, ¢, is parallel to
the y-axis as shown by a bold arrow in Fig. 1. In the
flat plate, both the x- and z-directional conduction are
considered. As the effect of x-directional heat conduc-
tion is rapidly weakened with x, the flat plate can be
divided into two regions: a region near the leading
edge of the flat plate where the heat flux in the flat
plate, g5, makes an oblique angle with the z-coordinate
(this region will be referred to as the non-parallel-
region hereinafter), and a region downward where the
heat flux ¢, is parallel to the z-coordinate (the parallel-
region). ¢s’s are shown by bold arrows in the flat plate
in Fig. 1. The situation can be seen in the isotherm
graphs given by Vynnycky et al. (Fig. 2 and Fig. 3 of
Ref. [7]).

For the parallel-region, ‘the vectorial dimensional

e thickness of the flat plate Greek symbols
f dimensi?gless stream  function; =/ ¢ dimensionless z-coordinate; =z/e
(VittinX) ", Where ¥ is the dimensional n dimensionless y-coordinate; = y(u,/vix)"?
stream function . ) yi thermal conductivity
L length of the flat plate used in the numeri- Vi kinematic viscosity of the fluid.
cal calculations
Pr Prandtl number Subscripts
4 heat flux o b bottom of the flat plate
r dimensionless parameter effective in the £ fluid
non-parallel-region; Eq. (8) in main stream condition
Re, Reynolds number; =u;,x/v¢ S flat plate
T temperature w surface of the flat plate.
T dimensionless  temperature; =(7—-T;,)/
(To—Tn)
az=e To=T analysis which distinguishes phases’ described in Ref.
at x = 0 AT —0. Tr=T, [9] gives the following dimensionless relation for the
ax surface temperature of the flat plate
a7
at x = o0o: ax 0 4) T, = function of (Pr, x*) (%)
, 0Ty aT.
aty=z=0: Ty =T, LR where T3, and x™ are defined as
ay 9z
aty=o00: Tf=Tip

N
% = (Tu - T)/(Ty — T),  x" = (i) ax )
Af Uin€

and Pr is the Prandtl number of the fluid. Thus, de-
rived dimensionless x-coordinate x* is substantially
equivalent to the so-called Brun number Br, [1] (actu-
ally, for the case of the laminar boundary layer flow a
relation x*~'? oc Br, holds).

For the non-parallel-region, where vectorial dimen-

Fig. 1. Schematic diagram of the problem.
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sional analysis cannot be applied, Eq. (3) is non-
dimensionalized as follows using x* and {=z/e

2T*  3°T*
*4 S s
i =0 7
ax*z 84,‘2 ( )
where
Ts_ Tin j'S ar
T:!=(——-+ * == . 8
s (Tb_ T; )’ ’ (/1f> Uine @®

4. Numerical calculation

After the numerical calculations for the flat plate of
finite length L, the effect of the finiteness of the plate
length is excluded by dropping the calculation results
for the rear region of the flat plate (say x/L > 0.8).
This is reasonable, since the temperature gradient
rapidly becomes smaller downstream, so the end effect
is limited within a certain distance upstream from the
trailing edge of the plate. As the maximum value of y
is also limited in numerical calculation, this value,
Vmax, 18 determined so that the ratio of the x-direc-
tional outflow at x=L to the total outflow is about
0.9.

Accordingly, in the third and the last lines in Eq.
4,

at x = o0: aty = oo:

are replace with

atx=L: aty = ypax:
respectively.

The flow field is obtained by numerically integrating
Eq. (1) using the bi-section method and the Runge—
Kutta method. For reference, the calculated value of
(d*f/dn?), - and (v Re?/uiy), - o are 0.33206, 0.8605
compared with those of 0.33206, 0.8604 given in Ref.
[8].

To obtain the temperature field, Egs. (2) and (3) are
then numerically solved by a FORTRAN program
based on the SIMPLE algorithm [10], «, v in Eq. (2)
being supplied with the above obtained flow solution.
This program, under the constant temperature con-
dition throughout the flat plate, gives values of Nu,/
Pel? (where Nu, is the local Nusselt number, Pe, the
local Peclet number) within 7.5% compared with that
of the theoretical result Nu,/Pe 1Y2=0.332Pr =Y for the
constant wall temperature.

In the present calculations, the flat plate is the epoxy
resin, and the fluid is the air [Pr = 0.72,
ve=1.604 x 107° m?/s, 2r=2.614 x 107> W/(m K)] or
the water [Pr = 7.1, vp=1.010 x 107% m?/s, A =0.5947

W/(m K)]. The value of Ay/A¢ is 11.5 for the air case
and 0.504 for the water case. The value of L/e covers
from 0.2 to 500.

5. Results and comparisons

The calculated results of the surface temperature of
the flat plate for the air and for the water are shown in
Fig. 2. Transition from the non-parallel-region to the
parallel-region can be seen, and as x* becomes smaller
in the non-parallel-region, the surface temperature
approaches some constant value depending on the
value of r*. As the value of r* approaches zero, the
non-parallel-region disappears and the whole flat plate
becomes the parallel-region and this is the case treated
in Refs. [1-5]. The surface temperature 773 for
Pr = 0.01 by Vynnycky et al. [7] are also shown for
reference. Their points are read by a ruler from Fig. 8
of Ref. [7], and rearranged using x*. The values of r*
are not shown, because their results do not extend to
the further smaller x* region.

In Fig. 3, the surface temperature corresponding to
the case r*=0 (that is, the parallel-region solution) is
shown, along with those reported by the previous
studies [1,2,5]. Judging from Luikov’s [1] developing
process, his integral method solution is considered to
be valid around Pr = 1, and so is Payvar’s result [2].

Luikov’s solution, upon rearrangement, gives the
following equation

T% =1/(140.331x*"1/2 pp=1/%) )

in the present notation. The line of T, for Pr = 0.72
is shown in Fig. 3 irrespective of the validity range of
his variable z (here z is defined by (3/2)(/¢/As)(e/dT) in
Ref. [1], where Jt is the thickness of the thermal
boundary layer). Payvar’s points are measured with a
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Fig. 2. Surface temperature of the flat plate—present results.
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Fig. 3. Parallel-region solution (r* = 0)—comparison.

ruler from Fig. 2 of Ref. [2] and the values of T, and
x™ are calculated for Pr = 0.72 by
x*=1/Pr'? B?), Ti=1-d, (10)
(Bry, with m = 1/3 and n = 1/2, and @, follow the
definitions of Ref. [2]) on the basis of Egs. (20), (18),
(9), (7) and (17) of Ref. [2]. The present result com-
pares well with those of Luikov [1], Payvar [2] and
Karvinen [3]. Although Karvinen’s result is not shown
here, his result almost coincides with Payvar’s. These
comprise the first solution family.

The result by Pop and Ingham (Tables 1 and 2 of
Ref. [5]) is also shown on the same figure, their dimen-
sionless axial coordinate being converted by

x*=&/Pr

(¢ follows their definition) an

on the basis of Egs. (5a), (5b) and (15b) of Ref. [5].
The result by Pop and Ingham and the result by Pozzi
and Lupo (Fig. 2 of Ref. [4]), which agree well with
each other, deviate far from the first solution family.
This is the second solution family.

If the x* value of the Pop and Ingham’s result were
multiplied by (1/2)% then their result would agree well
with the present result, and there would be no two sol-
ution families. Any cause of this discrepancy between
the two solution families is not known at the present
stage.

6. Concluding remarks

The surface temperature of the flat plate under the
classical conjugate condition is studied, and it is shown

that the flat plate is divided into two regions by the
dominant directions of the heat fluxes in the fluid and
the flat plate: the non-parallel-region and the parallel-
region. r* is the sole dimensionless parameter in the
non-parallel-region and starting from a definite value
determined by r*, the surface temperature first crawls,
then it begins to rise and merges into the parallel-
region solution. The effective dimensionless x-coordi-
nate throughout the whole region is x*, which is sub-
stantially equivalent to the Brun number (Br, oc x*~ /2
for the laminar boundary layer flow).

There are two solution families for the parallel-
region solution for the surface temperature. Judging
from the general validity of the integral method in the
laminar boundary layer theory, it is expected that a
valid solution should fall into the integral method sol-
ution within certain errors around Pr = 1. This
ensures the validity of the present solution.
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